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Hard and Soft-Core Equations of
State for Simple Fluids

VIl. Termination Temperatures for the
Kihara Potentialt

JOHN STEPHENSON and H. K. LEUNG}

Theoretical Physics Institute, University of Alberta,
Edmonton, Alberta, Canada, T6G 2J1

(Received April 2, 1979)

The six termination temperatures associated with the ten characteristic curves of a simple
fluid are calculated for the Kihara potential second virial coefficient, constructed from a Len-
nard-Jones m,n potential augmented by a spherical hard-core. Extreme values of the termina-
tion temperatures in both the hard-core Sutherland-type potential limit n — oo, and in the
opposite limit n — m are obtained. Over the useful range of values, 0 to 1, of the ratio a* of the
hard-core diameter to the molecular diameter in the absence of a hard-core, the termination
temperature ratios T¢/Ty, Ti/T¢ and Tp/ T, vary only slightly, for a given value of n, with
T,/T, — 2in the hard-core limit n — oo, independent of m and a*,

1 INTRODUCTION

Kihara' has shown how to introduce a hard-core into a classical inter-
molecular pair potential. In the case of a spherical hard-core of radius a
appropriate to the monatomic atoms of a simple fluid interacting via an
underlying spherically symmetric scalar pair potential ¢(r), one may con-
struct the corresponding Kihara potential ¢*(r) by the simple recipe

00 r < 2a,

o50) = {(ﬁ(r —2a), r>2a M
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FIGURE 1 Schematic Kihara potential ¢* () plotted versus radial distance r. The hard-core
diameter is 2a and the molecular diameter in the absence of a hard-core is o.

illustrated schematically in Figure 1. In the case when ¢ is the Lennard-
Jones m, n potential, Kihara has obtained expressions for the classical second
virial coefficient which we will use in this paper in order to study the six
termination temperatures associated with the ten characteristic curves of a
simple fluid. Our approach is parallel to that employed in an earlier analysis
of the second virial coefficient for the Lennard-Jones m, n potential in the
absence of a hard-core, in V.? The extra feature of the Kihara second virial
coefficient is the presence of the hard-core radius a, so the Lennard-Jones
molecular diameter o, locating the minimum of the potential ¢, becomes
increased to an effective molecular diameter (¢ + 2a). The useful range of the
ratio

a*t = — 03]
c

appears to be 0 to 1, based on estimates made by Kihara from the second
virial coefficients of a variety of gases of spherical atoms or molecules.!

For selected values of a* we will calculate the termination temperatures
over the permitted range of values m < n < oo of the repulsive exponent n.
We pay special attention both to the hard-core limit n —» oo when the
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potential is analogous to the Sutherland potential, and to the opposite
limiting case n — m. In the numerical work we set the attractive exponent m
equal to 6, appropriate to the Heitler-London dispersion energy between
neutral non-polar molecules. For the particular values n = 6, 9, 12, 18, 27
and oo, of the repulsive exponent, we have examined a wider range of values of
a*. The general effect of increasing a* is to depress the termination tempera-
tures (except T for larger values of a*), while leaving the ratios T/ Ty, Tx/T;
and Tp/T, almost unchanged for a given value of n. We obtain the asymptotic
forms of T, T, and T for large values of n, and find that the ratio T,/T,
tends to 2 in the hard-core limit n — oo independent of m and a*.

2 SECOND VIRIAL COEFFICIENT FORMULAE FOR THE
KIHARA POTENTIAL

The underlying intermolecular interaction is chosen to be the spherically
symmetric Lennard-Jones m, n potential

bl = [m(;‘-) - n(%)m], )

with attractive exponent m and repulsive exponent n, with n > m > 3. The
corresponding Kihara potential incorporating a hard-core of diameter 2a
is constructed via (1). Now ¢ is the radial distance from the surface of the
spherical hard-core to the point where the potential has a minimum of
depth ¢, Figure 1. (Kihara uses the symbol p, where we have used o).

The classical integral formula for the second virial coefficient is

B~ (%) [doon - emerony, ©
o 0
where
2no3L
b= 3 (5

is (4 x ) the volume of the L (Avogadro number) of molecules in a mole.
Inserting (3) in (4) we obtain Kihara’s formula for the second virial co-
efficient:

B = b[F; + 3a*F, + 3a**F, + a**] (6)

where a* is the hard-core to molecular diameter ratio defined in (2). The
temperature dependent functions F,, s = 1, 2, 3, which we also denote by
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F .. s» where we wish to indicate the dependence on m and n in the Lennard-
Jones case, are defined by

Froms = J' ‘”d(r/o)‘[l — o™ $mnDIKT, o
0

In terms of the dimensionless temperature

kT
—8

™ ®

one easily obtains, by expanding the attractive portion of the exponential in
(7) and integrating term by term, the series representations

F — i i _l_ r m—3S ﬁ ! ~m_ [(n —m)t +s)in (93.)
mn,s n,=ot! n m ('l—m)T*

sin oo

s{p I'(pt — s/n)
e —e 9b
n (qT*) o t1 (PP T ©b)

where we have introduced the convenient abbreviations
m

=1—-qg=— 10
p q="- (10)

asin V. Itis clear that the required extensions of the previous calculations in V
for the Lennard-Jones m, n potential will be quite easy to make: cf. V (11).

In the limit n —» co the Kihara potential becomes a Sutherland type
potential with a hard-core of diameter (¢ -+ 2a), and an attractive inverse
power tail with exponent m. The same limit n — co may be taken in the series
expansions (9) of the functions F,. One obtains

s\ & LAV
Fro, = (— ;).;) [r!(: . ;)T ] : 11

which may be inserted in (6). The second virial coefficient is now a monotonic
increasing function of temperature, approaching the constant limiting value
b(1 + a*)® as T* — oo. (The same limiting value of B is attained if m — o
too, at any temperature). Consequently only Ty, T and T exist in this hard-
core limit, but their values still depend on a*.

In the opposite limiting case n — m > 3, the underlying Lennard-Jones
m, n potential tends to the form

Gorlr) = — (f)m[l +m 1n<5)], (12)
r (v2

and provided m > 3 the integral formulae (7) for the functions F appearing
in the second virial coefficient are still valid. We insert the limiting form of the
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potential (12) in (7), and change the integration variable to

( )

Foms = (i) .[ dx x~ 1ML — X1 -InaiT (14)
mj Jo

which is again a simple extension of the corresponding formula in V (25a).
To derive expressions which are convenient for computation we split the
integration range at x = ¢, and proceed as in V to obtain

— ___f_ —sim - (e/T*)‘ ! —l—s/m+e/lT‘]
Foum, s —( )e [Z Ty T fodtt . (15)

m t=0

The Kihara second virial coefficient and its temperature derivatives can be
evaluated from (15) and (6) by numerical integration and summation of the
series.

3 TERMINATION TEMPERATURES FOR THE KIHARA
POTENTIAL

The six termination temperatures T, Tz, T¢, T, T, and Ty are defined via
Egs. (12a)-(12f) in TV.? These relations are linear and homogeneous in B
and its temperature derivatives. For any chosen values of m, n and a* with
n > m > 3, one may calculate the termination temperatures numerically
from the series expansion forms for B and F via (6) and (9). The values of the
termination temperatures in the limiting cases n — oo and n— m are
obtained from the corresponding expressions for the limiting forms of the
second virial coefficient in (11) and (15). In all the numerical work we have
confined our attention to the case m = 6. Qur results are presented in
Tables I and II, and Figures 2 and 3, which are designed to display the varia-
tion of the termination temperatures and the ratios of interest as n and a*
are altered.

For a fixed value of n, the general effect of increasing a* is to depress the
values of the termination temperatures (except for Tg) while leaving the
ratios To/Ty, Tr/T and T,/T, almost unchanged. The depression of Tj,
T; and Ty is mainly due to the additional constant term a** appearing in B,
since the defining expressions for these temperatures involve B itself. As
a* - oo, Ty, T, and Ty tend to zero. The effect on T, and T, is moderately
large in absolute terms but occurs in such a way that their ratio T,/T, is not
greatly altered. Ty decreases initially when n << 27, but then increases again
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FIGURE 2 Graphs of the scaled termination temperatures T* for the Kihara 6,1 potential

plotted on a logarithmic scale versus the exponent N = 3/n over the permitted range 0 < N < 4
for selected values of @* = 2a/o.

as a* increases. The defining formulae for T, T, and T involve only tempera-
ture derivatives of B, and so are not affected by the a*® constant term. For
large a* the values and ratios of T, T, and T are determined by F, algne,
and the numerical results for a* = oo are entered in the final columnS of
Tables I and II.

Our detailed remarks on the ratios of termination temperatures are
confined to the range 0 < a* < 1. For finite n the ratios T/T; and T;/T.
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FIGURE 3 Graphs of the scaled termination temperatures T* for the Kihara 6,n potential
plotted on a logarithmic scale versus the hard-core ratio a* over the useful range 0 < a* < 0.7
for selected values of the repulsive exponent n.

initially increase slightly to weak maximum values close to 1.9 occurring
at a* values which depend on n. For n = 6 the maximum is near a* ~ 1 and
moves to smaller a* values as n increases, until n = 27 beyond which these
ratios decrease monotonically as a* increases, while remaining greater than
1.82 and 1.86 respectively at a* = 1. As a* increases, T, and T, decrease
steadily but remain finite, so that their ratio Tp/T, increases steadily, while
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remaining less than 2. On the other hand, Ty, T; and T; decrease relatively
rapidly towards zero, so the ratios T,/Ty and T,/T; increase with a*. The
initial decrease and subsequent increase in Tj; are such that the ratios Tg/T,
and T/Tp also increase monotonically with a*.

For a fixed value of a* we may examine the n dependence of the termination
temperatures and their ratios, which in graphical form, Figure 2, appears
quite similar to that of the Lennard-Jones case analyzed in V with a* = 0.
For small a* values below about 0.4, To/Ty, T/Ty and Ty/T. increase
steadily with n, but when a* is close to 0.5 these ratios pass through a maxi-
mum before decreasing towards finite limiting values as n — oo. Beyond

* 2 0.6 the decrease is monotonic from n = 6 to n = co. The other termin-
ation temperature ratios in Table II appear to increase steadily as n increases
from m = 6 to co, except for the ratio T,/T,, which passes through a weak
maximum at very large values of a*, and remains close to 2.

For large values of n we can extract the asymptotic forms of T, T, and T
from the leading positive t = O terms and the leading negative t = 1 terms
in the series expansion representation of Bobtained by combining (9) with (6).
To keep the working neat we write the second virial coefficient expansion in
the form :

B=a*+ Z Zc (1) Ty *sin, (16)
s=1 1=
where the coefficients ¢, may be identified explicitly by inspection of (9) and
(6). Clearly c,, are positive, and all other coefficients are negative. All the
coefficients have finite limiting forms as n — oo, which may be extracted
from (11) and (6). The divergences in T,, Ty and T arise entirely from the
temperature differentiations involved in their definitions:

T,:B =0, (17a)
»:B=0, (17b)
Tp:B+ TE=0. (17¢)

From (16) and (17), taking the leading terms t = 0 and ¢t = 1 in the series,
we easily find that

* (Z?=1 Cs )
TA ~ —nm, (183)
* (Zs lcsl)
T3~ (Z? 1 5C50)” (180)
Tt ~ —n? (Zs 16s1) (18¢)

(23 1 S csO)



08:55 28 January 2011

Downl oaded At:

188 J. STEPHENSON AND H. K. LEUNG

where the limiting forms as n — oo of the coefficients ¢, and ¢,; must be
inserted. It is now obvious that T,/T, — 2 as n — oo independent of m and a*.
This result is a further generalization to the Kihara potential type of second
virial coefficient of the discussion leading to the same result in VI (16) and
(17).* In the present case it is trivial to show that the limiting coefficients in
(18) are

C30 = 1, Cy0 = 3a*, €10 = 3a*?, (19a)

so the divergent termination temperatures are related by
T% ~iT% ~ T}%Z—?) (20a)
- n[(m o (mz‘_’_* 5+ (m":zl)] /(1 +a%%  (20b)

which reduce to the Lennard-Jones case when a* = 0.

4 CONCLUDING REMARKS

In this paper we have determined the effect on the termination temperatures
and their ratios of introducing a hard-core into the Lennard-Jones m, n
potential, thereby constructing the corresponding Kihara potential. For the
chosen fixed value of the attractive exponent m = 6, one finds that over the
entire permitted range of the repulsive exponent n and over the useful range
0 to 1 of the hard-core to molecular diameter ratio a*, that the ratios T;/Tj,
Te/T: and Tp/T, lie within narrow bounds, with T./T, and T;/T; not ex-
ceeding 1.905 and 1.918 respectively for values of n up to 27, and with T,/T,
tending to 2 in the hard-core limit n — co. Experimental values of these
ratios for argon® are Ti/Ty ~ 1.921 and T;/T; ~ 1.937, which considerably
exceed all the entries in Table I1 up to n = 27. One would therefore anticipate
achieving only rather limited precision in fitting experimental second virial
coefficient data for argon using 6, 12 and 6, 18 Kihara and Lennard-Jones
potentials.>® The apparently greater success of the square-well potential®
can be partially attributed to its ability to yield sufficiently high values of the
ratios To/Ty and T¢/T, which are in better accord with the experimental
values. One may refer to the entry in Table Il in V with R® = 3.5, where R
is the ratio of the outside diameter of the square-well to the molecular hard-
core diameter, so

1 1
R=1+—, or a*

a* ~ R=1) @l
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[The Kihara second virial coefficient in (6) approaches the square-well form
at low temperatures when a* is very large (R ~ 1). Then one may take just
the last two terms in (6) and insert the low temperature asymptotic form of
F, ~ (—)e''™, to leading order (cf. V (40)). The behaviour of the termination
temperatures Ty, T and Ty is also similar for both models as a* — oo, R — 1.]
The experimental results for argon do not extend to the very high tempera-
tures (~ T,,) at which the second virial coefficient is expected to pass through
a maximum, and so the necessity of using a more realistic potential and second
virial coefficient does not yet become apparent. We shall study the experi-
mental situation in more detail in another paper of this series.
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